

Cryptanalysis of TWIS Block Cipher

Onur KOÇAK, Neşe ÖZTOP

Institute of Applied Mathematics Middle East Technical University, Turkey

> SKEW 2011 February 17, 2011

> > <ロト <四ト <注入 <注下 <注下 <

Outline

- 2 Differential Cryptanalysis
- 3 Impossible Differential Analysis

Observations

-≣->

Outline

- 2 Differential Cryptanalysis
- Impossible Differential Analysis
- Observations
- 5 Conclusion

▲周 → ▲ 目 →

- < ≣ →

TWIS Block Cipher

- A lightweight block cipher
- Key Size/Block Size: 128 bits
- 2-Branch Generalized Feistel Network
- 10 Rounds

A (1) > (1) > (1)

< ≣ >

TWIS Algorithm

< ∃→

æ

G-Function

• G-Function is the round function of the algorithm

▲□→ < □→</p>

- < ≣ →

æ

F-Function

- *F*-Function is the core of the *G*-function
- Consists of S-Box and a permutation

A (1) < (1)</p>

- 6x8 S-Box
- 8-bit input $I \rightarrow I \land 0x3f \rightarrow 6$ -bit

Table: S-Box

	0	1	2	3	4	5	6	7	8	9	а	b	с	d	е	f
0	90	49	d1	сб	2f	33	74	fb	95	6d	82	ea	0e	b0	a8	1c
1	28	d0	4b	92	5c	ee	85	b1	c4	0a	76	3d	63	f9	17	af
2	bf	bf	19	65	f7	7a	32	20	16	ce	e4	83	9d	5b	4c	d8
3	ee	99	2e	f8	d4	9b	0f	13	29	89	67	cd	71	dd	b6	f4

æ

- 6x8 S-Box
- 8-bit input $I \rightarrow I \land 0x3f \rightarrow 6$ -bit

Table: S-Box

	0	1	2	3	4	5	6	7	8	9	а	b	с	d	е	f
0	90	49	d1	сб	2f	33	74	fb	95	6d	82	ea	0e	b0	a8	1c
1	28	d0	4b	92	5c	ee	85	b1	c4	0a	76	3d	63	f9	17	af
2	bf	bf	19	65	f7	7a	32	20	16	ce	e4	83	9d	5b	4c	d8
3	ee	99	2e	f8	d4	9b	0f	13	29	89	67	cd	71	dd	b6	f4

æ

Alternative Round Function

Onur KOÇAK, Neşe ÖZTOP Cryptanalysis of TWIS Block Cipher

Key Schedule

- Key schedule generates 11 subkeys
- NFSR which uses an S-Box and a diffusion matrix

$$M = \begin{pmatrix} 0x01 & 0x02 & 0x04 & 0x06 \\ 0x02 & 0x01 & 0x06 & 0x04 \\ 0x04 & 0x06 & 0x01 & 0x02 \\ 0x06 & 0x04 & 0x02 & 0x01 \end{pmatrix}$$

Key Schedule

・ロト ・回ト ・ヨト

< ∃→

Э

.

Outline

Description of TWIS

- 2 Differential Cryptanalysis
- Impossible Differential Analysis

Observations

5 Conclusion

・ 同・ ・ ヨ・

- < ≣ →

< ∃ >

Overview of the Differential Attack

- Attack on 10-Round TWIS
- Exclude final key whitening
- 9.5-Round Characteristic
- Recover 12 bits of 32-bit round subkey

Properties

Property 1:

The first two bits of the S-Box input is ignored: $O = S(I \wedge 0x3f)$. **Property 2:**

Input differences 0x01 and 0x25 produce zero output differences with probability 2^{-5} .

- < ≣ →

9.5-round Differential Characteristic

• First find a 4-round characteristic of probability 1 using *Property 1.*

● ▶ < ⇒ ▶

< ≣ >

æ

A (1) > A (2) > A

→ ∃ →

Conclusion

9.5-round Differential Characteristic

- Then, extend the characteristic by appending rounds to the beginning and the end
- Use *Property 2* in order to decrease the number of active S-Boxes

(1日) (日) (日)

æ

9.5-round Differential Characteristic

Rounds	ΔI_0	Δl_1	ΔI_2	ΔI_3	# Active S-boxes	I/O Diff. for S-box	Probability
1	02000000 _x	00000000x	00000000 _x	0000A600x	1	$0x02 \rightarrow 0xA6$	2-4
2	00000000 _x	00000000x	01000000 _x	00000000 _x	1	$0 \times 01 \rightarrow 0 \times 00$	2-5
3	01000000 _x	00000000 _x	0000000 _x	0000000 _x	1	$0 \times 01 \rightarrow 0 \times 00$	2 ⁻⁵
4	00000000x	00000000x	0080000 _x	00000000 _x	0	-	1
5	00800000 _x	00000000x	00000000 _x	00000000 _x	0	-	1
6	00000000x	00000000x	00400000 _x	00000000 _x	0	-	1
7	00400000 _x	00000000 _x	00000000 _x	00000000 _x	0	-	1
8	00000000 _x	00000000x	00200000 _x	00000000x	1	$0x20 \rightarrow 0x83$	2-4
9	00200000 _x	00000000 _x	80000041 _×	00000000 _x	2	$\begin{array}{c} 0{\times}20 \rightarrow 0{\times}83 \\ 0{\times}01 \rightarrow 0{\times}00 \end{array}$	$2^{-5} \cdot 2^{-4}$
9.5	80000041 _x	80000041 _x	00100000 _x	00000000 _x	1	$0x01 \rightarrow 0x00$	2-5
	80000041 _x	00004180 _x	80100041 _x	C0000020 _x	-	-	-

The total probability is 2^{-32} .

Э

9.5-round Differential Characteristic

Onur KOÇAK, Neşe ÖZTOP Cryptanalysis of TWIS Block Cipher

・ロン ・回と ・ヨン ・ヨン

æ

9.5-round Differential Characteristic

Rounds	ΔI_0	Δl_1	Δl_2	ΔI_3	# Active S-boxes	I/O Diff. for S-box	Probability
1	02000000 _x	00000000x	0000000 _x	0000A600 _x	1	$0x02 \rightarrow 0xA6$	2-4
2	00000000x	00000000x	01000000x	00000000x	1	$0x01 \rightarrow 0x00$	2 ⁻⁵
3	01000000 _x	00000000 _x	00000000 _x	0000000 _x	1	$0 \times 01 \rightarrow 0 \times 00$	1*
4	00000000x	00000000x	00800000 _x	00000000 _x	0	-	1
5	00800000 _x	00000000x	00000000 _x	00000000 _x	0	-	1
6	00000000x	00000000x	00400000 _x	00000000 _x	0	-	1
7	00400000 _x	00000000 _x	00000000 _x	0000000 _x	0	-	1
8	00000000 _x	0000000 _x	00200000 _x	0000000 _x	1	$0x20 \rightarrow 0x83$	2-4
9	00200000 _x	00000000 _x	80000041 _x	00000000 _x	2	$\begin{array}{c} 0{\times}20 \rightarrow 0{\times}83 \\ 0{\times}01 \rightarrow 0{\times}00 \end{array}$	2 ⁻⁵ *
9.5	80000041 _x	80000041 _x	00100000 _x	00000000 _x	1	$0x01 \rightarrow 0x00$	1*
	80000041 _x	00004180 _x	80100041 _x	C0000020 _x	-	-	-

The total probability is reduced to 2^{-18} .

• Take $N = c.2^{18}$ plaintext pairs P^i, P^{i*} s.t.

 $P^{i} \oplus P^{i^{*}} = (0200000_{x}, 0000000_{x}, 0000000_{x}, 0000A600_{x})$

and obtain their corresponding ciphertexts C^{i}, C^{i*} .

- Check the first 64-bit and the last 32-bit ciphertext difference and keep the text pairs satisfying correct differences.
- Keep a counter for each possible value of the 12 bits of the subkey *RK*₁₀ corresponding to the second and the fourth bytes.

イロン イヨン イヨン イヨン

• Take $N = c.2^{18}$ plaintext pairs $P^i, {P^i}^*$ s.t.

 $P^{i} \oplus P^{i^{*}} = (0200000_{x}, 0000000_{x}, 0000000_{x}, 0000A600_{x})$

and obtain their corresponding ciphertexts C^{i}, C^{i*} .

- Check the first 64-bit and the last 32-bit ciphertext difference and keep the text pairs satisfying correct differences.
- Keep a counter for each possible value of the 12 bits of the subkey *RK*₁₀ corresponding to the second and the fourth bytes.

イロン 不同と 不同と 不同と

• Take $N = c.2^{18}$ plaintext pairs $P^i, {P^i}^*$ s.t.

 $P^{i} \oplus P^{i^{*}} = (0200000_{x}, 0000000_{x}, 0000000_{x}, 0000A600_{x})$

and obtain their corresponding ciphertexts C^{i}, C^{i*} .

- Check the first 64-bit and the last 32-bit ciphertext difference and keep the text pairs satisfying correct differences.
- Keep a counter for each possible value of the 12 bits of the subkey RK_{10} corresponding to the second and the fourth bytes.

・ロン ・回と ・ヨン・

• For each pair of plaintexts and their corresponding ciphertexts (C^i , C^{i*}), increment the counter for the corresponding candidate subkey RK_{10} when the following equations holds:

 $F(C_0^i, RK_{10}) \oplus F(C_0^{i*}, RK_{10}) \oplus 00004180_x = 80000041_x \oplus (\Delta C_2^i <<<1).$

イロン イヨン イヨン イヨン

• Adopt the key with the highest counter as the right key.

• For each pair of plaintexts and their corresponding ciphertexts (C^i , C^{i*}), increment the counter for the corresponding candidate subkey RK_{10} when the following equations holds:

 $F(C_0^i, RK_{10}) \oplus F(C_0^{i^*}, RK_{10}) \oplus 00004180_x = 80000041_x \oplus (\Delta C_2^i <<<1).$

• Adopt the key with the highest counter as the right key.

<ロ> <同> <同> <同> < 同>

- < ≣ →

・ 同・ ・ ヨ・

- < ≣ →

Outline

- 2 Differential Cryptanalysis
- 3 Impossible Differential Analysis
 - Observations
 - 5 Conclusion

Impossible Differential Characteristic

- Start with the difference $(0, 0, \Delta y, 0)$, $\Delta y = 0080000_x$
- Propagate this difference for 4.5 rounds
- Obtain the difference (Δt, 0, 0, 0), Δt = 0020000_x
- 4.5-round differential characteristic with probability 1

A (1) > (1) > (1)

.⊒ .⊳

Conclusion

- Start with the difference $(\Delta t, 0, 0, 0)$, $\Delta t = 00200000_{\times}$
- Propagate backwards for 5 rounds
- Obtain the difference $(0, 0, \Delta x, 0)$, $\Delta x = 0100000_x$
- 5-round differential characteristic with probability 1

(4回) (1) (1)

< ∃⇒

æ

(1日) (日) (日)

Э

Impossible!

 $\Delta t = 0020000_x \neq 0100000_x = \Delta x$

A (1) > A (2) > A

< ≣⇒

æ

Possible Attack

- Add half round to this characteristic
- Guess the corresponding subkeys
- Eliminate the wrong key values

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Outline

1 Description of TWIS

- 2 Differential Cryptanalysis
- Impossible Differential Analysis

Observations

5 Conclusion

Actual Key Size

- The key size of TWIS is 128 bits.
- However, not all the bits are used to generate subkeys:
 - First subkey is generated using the first 3 and last 29 bits
 - Remaining 10 subkey is generated by 3 left rotation

A (1) > (1) > (1)

Key Schedule

・ロト ・回ト ・ヨト

< ∃→

Э

.

Onur KOÇAK, Neşe ÖZTOP

Cryptanalysis of TWIS Block Cipher

Conclusion

Actual Key Size

- The key size of TWIS is 128 bits.
- However, not all the bits are used to generate subkeys:
 - First subkey is generated using the first 3 and last 29 bits
 - Remaining 10 subkey is generated by 3 right rotation
 - So, $3 + 29 + 3 \cdot 10 = 62$ bits of the master key is used
- Therefore, the security is 62 bits.

< 🗇 > < 🖃 >

Actual Key Size

- The key size of TWIS is 128 bits.
- However, not all the bits are used to generate subkeys:
 - First subkey is generated using the first 3 and last 29 bits
 - Remaining 10 subkey is generated by 3 right rotation
 - So, $3 + 29 + 3 \cdot 10 = 62$ bits of the master key is used
- Therefore, the security is 62 bits.
 - The key scheduling uses the same S-Box with data processing.
 - Considering the eliminated bits by the S-Boxes, the security reduces to 54 bits.

Actual Subkey Size

- Also, the S-Box in the *F*-function eliminates the first two bits of the subkey.
- Therefore, the actual subkey size is 24 bits.

→ 同 → → 三 →

- < ≣ →

æ

The key whitening, which is introduced to increase security, is used in an in apropprate manner:

- RK_0 is XORed to the first 32-bit word.
- Then, this word is input to the *F*-function immediately where RK_0 is XORed again.

A (1) > A (2) > A

- < ≣ →

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

The key whitening, which is introduced to increase security, is used in an inappropriate manner:

- RK_0 is XORed to the first 32-bit word.
- Then, this word is input to the *F*-function immediately where RK_0 is XORed again.
- Therefore, key has no effect in the first *G*-function: one can proceed without knowing the key.

A (1) > (1) > (1)

- Moreover, as the key whitening, *RK*₂ is XORed to the 32-bit word that is affected by *RK*₁₀.
- If one can find both RK_2 and RK_{10} , he can get information about the subkeys inbetween by going forwards and backwards from RK_2 and RK_{10} respectively.

・ 同 ト ・ ヨ ト ・ ヨ ト

Weak Diffusion

- The diffusion of the keys among S-Boxes is very weak.
- One can analyze the 32-bit subkey as 4 independent 8-bit subkeys.
- The complexity of an ordinary exhaustive exhaustive search will be 2²⁴.
- If, the search is on 4 8-bit subkeys, the complexity will be $4 \cdot 2^6 = 2^8$.

Outline

Description of TWIS

- 2 Differential Cryptanalysis
- Impossible Differential Analysis

Observations

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Conclusion

- A differential attack on full-round TWIS
- Recover 12 bits of the 32-bit final subkey with 2²¹ complexity
- 9.5-round impossible distinguisher
- At most 54-bit security
- Weaknesses due to the use of subkeys during the encryption and the choice of whitening subkeys

A (1) > (1) > (1)

Thank you for your attention!

Questions?

Onur KOÇAK, Neşe ÖZTOP Cryptanalysis of TWIS Block Cipher

• 3 >