(1)

Cryptanalysis of TWIS Block Cipher

Onur KOÇAK, Neșe ÖZTOP
Institute of Applied Mathematics
Middle East Technical University, Turkey

SKEW 2011
February 17, 2011

Outline

(1) Description of TWIS
(2) Differential Cryptanalysis
(3) Impossible Differential Analysis
(4) Observations
(5) Conclusion

Outline

(1) Description of TWIS

(2) Differential Cryptanalysis
(3) Impossible Differential Analysis
4) Observations
(5) Conclusion

TWIS Block Cipher

- A lightweight block cipher
- Key Size/Block Size: 128 bits
- 2-Branch Generalized Feistel Network
- 10 Rounds

TWIS Algorithm

Onur KOÇAK, Neșe ÖZTOP

G-Function

- G-Function is the round function of the algorithm

F-Function

- F-Function is the core of the G-function
- Consists of S-Box and a permutation

S-Box

- 6x8 S-Box
- 8-bit input $I \rightarrow I \wedge 0 \times 3 f \rightarrow 6$-bit

Table: S-Box

S-Box

- 6x8 S-Box
- 8-bit input $I \rightarrow I \wedge 0 \times 3 f \rightarrow 6$-bit

Table: S-Box

Alternative Round Function

Key Schedule

- Key schedule generates 11 subkeys
- NFSR which uses an S-Box and a diffusion matrix

$$
M=\left(\begin{array}{cccc}
0 \times 01 & 0 \times 02 & 0 \times 04 & 0 \times 06 \\
0 \times 02 & 0 \times 01 & 0 \times 06 & 0 \times 04 \\
0 \times 04 & 0 \times 06 & 0 \times 01 & 0 \times 02 \\
0 \times 06 & 0 \times 04 & 0 \times 02 & 0 \times 01
\end{array}\right)
$$

Key Schedule

Outline

(1) Description of TWIS

(2) Differential Cryptanalysis

(3) Impossible Differential Analysis

4) Observations
(5) Conclusion

Overview of the Differential Attack

- Attack on 10-Round TWIS
- Exclude final key whitening
- 9.5-Round Characteristic
- Recover 12 bits of 32-bit round subkey

Properties

Property 1:

The first two bits of the S-Box input is ignored: $O=S(I \wedge 0 \times 3 f)$.
Property 2:
Input differences 0×01 and 0×25 produce zero output differences with probability 2^{-5}.

9.5-round Differential Characteristic

- First find a 4-round characteristic of probability 1 using Property 1.

9.5-round Differential Characteristic

- Then, extend the characteristic by appending rounds to the beginning and the end
- Use Property 2 in order to decrease the number of active S-Boxes

9.5-round Differential Characteristic

Rounds	ΔI_{0}	ΔI_{1}	ΔI_{2}	ΔI_{3}	\# Active S-boxes	I/O Diff. for S-box	Probability
$\mathbf{1}$	02000000_{x}	00000000_{x}	00000000_{x}	$0000 A 600_{x}$	1	$0 \times 02 \rightarrow 0 \times A 6$	2^{-4}
$\mathbf{2}$	00000000_{x}	00000000_{x}	01000000_{x}	00000000_{x}	1	$0 \times 01 \rightarrow 0 \times 00$	2^{-5}
$\mathbf{3}$	01000000_{x}	00000000_{x}	00000000_{x}	00000000_{x}	1	$0 \times 01 \rightarrow 0 \times 00$	2^{-5}
$\mathbf{4}$	00000000_{x}	00000000_{x}	00800000_{x}	00000000_{x}	0	-	1
$\mathbf{5}$	00800000_{x}	00000000_{x}	00000000_{x}	00000000_{x}	0	-	1
$\mathbf{6}$	00000000_{x}	00000000_{x}	00400000_{x}	00000000_{x}	0	-	1
$\mathbf{7}$	00400000_{x}	00000000_{x}	0000000_{x}	00000000_{x}	0	-	1
$\mathbf{8}$	00000000_{x}	00000000_{x}	00200000_{x}	00000000_{x}	1	$0 \times 20 \rightarrow 0 \times 83$	2^{-4}
$\mathbf{9}$	00200000_{x}	00000000_{x}	80000041_{x}	00000000_{x}	2	$0 \times 20 \rightarrow 0 \times 83$	$2^{-5} \cdot 2^{-4}$
$\mathbf{9 . 5}$	80000041_{x}	80000041_{x}	00100000_{x}	00000000_{x}	1	$0 \times 01 \rightarrow 0 \times 00$	$2^{-4} \rightarrow 0 \times 00$
	80000041_{x}	00004180_{x}	8010001_{x}	0000000_{x}	2^{-5}		

The total probability is 2^{-32}.

9.5-round Differential Characteristic

Onur KOÇAK, Neşe ÖZTOP
Cryptanalysis of TWIS Block Cipher

9.5-round Differential Characteristic

Rounds	ΔI_{0}	ΔI_{1}	ΔI_{2}	ΔI_{3}	\# Active S-boxes	I/O Diff. for S-box	Probability
$\mathbf{1}$	02000000_{x}	00000000_{x}	00000000_{x}	$0000 \mathrm{~A}^{2000_{x}}$	1	$0 \times 02 \rightarrow 0 \times A 6$	2^{-4}
$\mathbf{2}$	00000000_{x}	00000000_{x}	01000000_{x}	0000000_{x}	1	$0 \times 01 \rightarrow 0 \times 00$	2^{-5}
$\mathbf{3}$	01000000_{x}	00000000_{x}	00000000_{x}	00000000_{x}	1	$0 \times 01 \rightarrow 0 \times 00$	1^{*}
$\mathbf{4}$	00000000_{x}	00000000_{x}	00800000_{x}	0000000_{x}	0	-	1
$\mathbf{5}$	00800000_{x}	00000000_{x}	00000000_{x}	00000000_{x}	0	-	1
$\mathbf{6}$	00000000_{x}	00000000_{x}	00400000_{x}	00000000_{x}	0	-	1
$\mathbf{7}$	00400000_{x}	00000000_{x}	00000000_{x}	0000000_{x}	0	-	1
$\mathbf{8}$	00000000_{x}	00000000_{x}	00200000_{x}	00000000_{x}	1	$0 \times 20 \rightarrow 0 \times 83$	2^{-4}
$\mathbf{9}$	00200000_{x}	00000000_{x}	80000041_{x}	00000000_{x}	2	$0 \times 20 \rightarrow 0 \times 83$	$2^{-5 *}$
$\mathbf{9 . 5}$	80000041_{x}	80000041_{x}	00100000_{x}	00000000_{x}	1	$0 \times 01 \rightarrow 0 \times 00$	
	80000041_{x}	00004180_{x}	80100041_{x}	$C 0000020_{x}$	-	1^{*}	

The total probability is reduced to 2^{-18}.

Attack Procedure

- Take $N=c .2^{18}$ plaintext pairs $P^{i}, P^{i^{*}}$ s.t.
$P^{i} \oplus P^{i^{*}}=\left(02000000_{x}, 00000000_{x}, 00000000_{x}, 0000 A 600_{x}\right)$
and obtain their corresponding ciphertexts $C^{i}, C^{i *}$.
-

ciphertext difference and keep the text pair

satisfying correct differences.
$-$

12 bits of the subkey RK10 corresponding to

 the second and the fourth bytes
Attack Procedure

- Take $N=c .2^{18}$ plaintext pairs $P^{i}, P^{i^{*}}$ s.t.
$P^{i} \oplus P^{i^{*}}=\left(02000000_{x}, 00000000_{x}, 00000000_{x}, 0000 A 600_{x}\right)$
and obtain their corresponding ciphertexts $C^{i}, C^{i *}$.
- Check the first 64-bit and the last 32-bit ciphertext difference and keep the text pairs satisfying correct differences.

Attack Procedure

- Take $N=c .2^{18}$ plaintext pairs $P^{i}, P^{i^{*}}$ s.t.
$P^{i} \oplus P^{i^{*}}=\left(02000000_{x}, 00000000_{x}, 00000000_{x}, 0000 A 600_{x}\right)$
and obtain their corresponding ciphertexts $C^{i}, C^{i *}$.
- Check the first 64-bit and the last 32-bit ciphertext difference and keep the text pairs satisfying correct differences.
- Keep a counter for each possible value of the 12 bits of the subkey $R K_{10}$ corresponding to the second and the fourth bytes.

Attack Procedure

- For each pair of plaintexts and their corresponding ciphertexts $\left(C^{i}, C^{i *}\right)$, increment the counter for the corresponding candidate subkey $R K_{10}$ when the following equations holds:
$F\left(C_{0}^{i}, R K_{10}\right) \oplus F\left(C_{0}^{i^{*}}, R K_{10}\right) \oplus 00004180_{x}=80000041_{x} \oplus\left(\Delta C_{2}^{i} \lll 1\right)$.

Attack Procedure

- For each pair of plaintexts and their corresponding ciphertexts $\left(C^{i}, C^{i *}\right)$, increment the counter for the corresponding candidate subkey $R K_{10}$ when the following equations holds:
$F\left(C_{0}^{i}, R K_{10}\right) \oplus F\left(C_{0}^{i^{*}}, R K_{10}\right) \oplus 00004180_{x}=80000041_{x} \oplus\left(\Delta C_{2}^{i} \lll 1\right)$.
- Adopt the key with the highest counter as the right key.

Outline

(1) Description of TWIS

(2) Differential Cryptanalysis
(3) Impossible Differential Analysis
4) Observations
(5) Conclusion

Impossible Differential Characteristic

- Start with the difference $(0,0, \Delta y, 0)$, $\Delta y=00800000_{x}$
- Propagate this difference for 4.5 rounds
- Obtain the difference $(\Delta t, 0,0,0)$, $\Delta t=00200000_{x}$
- 4.5-round differential characteristic with probability 1

- Start with the difference $(\Delta t, 0,0,0)$, $\Delta t=00200000_{x}$
- Propagate backwards for 5 rounds
- Obtain the difference $(0,0, \Delta x, 0)$, $\Delta x=01000000_{x}$
- 5-round differential characteristic with probability 1

Impossible!

$\Delta t=00200000_{x} \neq 01000000_{x}=\Delta x$

Possible Attack

- Add half round to this characteristic
- Guess the corresponding subkeys
- Eliminate the wrong key values

Outline

(1) Description of TWIS
 (2) Differential Cryptanalysis
 (3) Impossible Differential Analysis

4) Observations
(5) Conclusion

Actual Key Size

- The key size of TWIS is 128 bits.
- However, not all the bits are used to generate subkeys:
- First subkey is generated using the first 3 and last 29 bits
- Remaining 10 subkey is generated by 3 left rotation

Key Schedule

Actual Key Size

Onur KOÇAK, Neşe ÖZTOP

Actual Key Size

- The key size of TWIS is 128 bits.
- However, not all the bits are used to generate subkeys:
- First subkey is generated using the first 3 and last 29 bits
- Remaining 10 subkey is generated by 3 right rotation
- So, $3+29+3 \cdot 10=62$ bits of the master key is used
- Therefore, the security is 62 bits.

Actual Key Size

- The key size of TWIS is 128 bits.
- However, not all the bits are used to generate subkeys:
- First subkey is generated using the first 3 and last 29 bits
- Remaining 10 subkey is generated by 3 right rotation
- So, $3+29+3 \cdot 10=62$ bits of the master key is used
- Therefore, the security is 62 bits.
- The key scheduling uses the same S-Box with data processing.
- Considering the eliminated bits by the S-Boxes, the security reduces to 54 bits.

Actual Subkey Size

- Also, the S-Box in the F-function eliminates the first two bits of the subkey.
- Therefore, the actual subkey size is 24 bits.

Key Whitening

The key whitening, which is introduced to increase security, is used in an in apropprate manner:

- $R K_{0}$ is XORed to the first 32-bit word.
- Then, this word is input to the F-function immediately where $R K_{0}$ is XORed again.

Key Whitening

Key Whitening

The key whitening, which is introduced to increase security, is used in an inappropriate manner:

- $R K_{0}$ is XORed to the first 32-bit word.
- Then, this word is input to the F-function immediately where $R K_{0}$ is XORed again.
- Therefore, key has no effect in the first G-function: one can proceed without knowing the key.

Key Whitening

- Moreover, as the key whitening, $R K_{2}$ is XORed to the 32-bit word that is affected by $R K_{10}$.
- If one can find both $R K_{2}$ and $R K_{10}$, he can get information about the subkeys inbetween by going forwards and backwards from $R K_{2}$ and $R K_{10}$ respectively.

Weak Diffusion

- The diffusion of the keys among S-Boxes is very weak.
- One can analyze the 32 -bit subkey as 4 independent 8 -bit subkeys.
- The complexity of an ordinary exhaustive exhaustive search will be 2^{24}.
- If, the search is on 48 -bit subkeys, the complexity will be $4 \cdot 2^{6}=2^{8}$.

Outline

(1) Description of TWIS
 (2) Differential Cryptanalysis
 (3) Impossible Differential Analysis

4) Observations
(5) Conclusion

Conclusion

- A differential attack on full-round TWIS
- Recover 12 bits of the 32 -bit final subkey with 2^{21} complexity
- 9.5-round impossible distinguisher
- At most 54-bit security
- Weaknesses due to the use of subkeys during the encryption and the choice of whitening subkeys

Thank you for your attention!

Questions?

